Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Comput Biol Med ; 170: 108056, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38301512

RESUMO

The Nipah virus (NPV) is a highly lethal virus, known for its significant fatality rate. The virus initially originated in Malaysia in 1998 and later led to outbreaks in nearby countries such as Bangladesh, Singapore, and India. Currently, there are no specific vaccines available for this virus. The current work employed the reverse vaccinology method to conduct a comprehensive analysis of the entire proteome of the NPV virus. The aim was to identify and choose the most promising antigenic proteins that could serve as potential candidates for vaccine development. We have also designed B and T cell epitopes-based vaccine candidate using immunoinformatics approach. We have identified a total of 5 novel Cytotoxic T Lymphocytes (CTL), 5 Helper T Lymphocytes (HTL), and 6 linear B-cell potential antigenic epitopes which are novel and can be used for further vaccine development against Nipah virus. Then we performed the physicochemical properties, antigenic, immunogenic and allergenicity prediction of the designed vaccine candidate against NPV. Further, Computational analysis indicated that these epitopes possessed highly antigenic properties and were capable of interacting with immune receptors. The designed vaccine were then docked with the human immune receptors, namely TLR-2 and TLR-4 showed robust interaction with the immune receptor. Molecular dynamics simulations demonstrated robust binding and good dynamics. After numerous dosages at varied intervals, computational immune response modeling showed that the immunogenic construct might elicit a significant immune response. In conclusion, the immunogenic construct shows promise in providing protection against NPV, However, further experimental validation is required before moving to clinical trials.


Assuntos
Vírus Nipah , Humanos , 60444 , Vacinas de Subunidades/química , Epitopos de Linfócito B/química , Simulação de Dinâmica Molecular , Desenvolvimento de Vacinas , Biologia Computacional/métodos , Simulação de Acoplamento Molecular
2.
PLoS One ; 19(1): e0293731, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38241420

RESUMO

Prevention of Clostridium difficile infection is challenging worldwide owing to its high morbidity and mortality rates. C. difficile is currently being classified as an urgent threat by the CDC. Devising a new therapeutic strategy become indispensable against C. difficile infection due to its high rates of reinfection and increasing antimicrobial resistance. The current study is based on core proteome data of C. difficile to identify promising vaccine and drug candidates. Immunoinformatics and vaccinomics approaches were employed to construct multi-epitope-based chimeric vaccine constructs from top-ranked T- and B-cell epitopes. The efficacy of the designed vaccine was assessed by immunological analysis, immune receptor binding potential and immune simulation analyses. Additionally, subtractive proteomics and druggability analyses prioritized several promising and alternative drug targets against C. difficile. These include FMN-dependent nitroreductase which was prioritized for pharmacophore-based virtual screening of druggable molecule databases to predict potent inhibitors. A MolPort-001-785-965 druggable molecule was found to exhibit significant binding affinity with the conserved residues of FMN-dependent nitroreductase. The experimental validation of the therapeutic targets prioritized in the current study may worthy to identify new strategies to combat the drug-resistant C. difficile infection.


Assuntos
Clostridioides difficile , Clostridioides difficile/metabolismo , Simulação de Acoplamento Molecular , Epitopos de Linfócito B , Vacinas Bacterianas , Nitrorredutases/metabolismo , Epitopos de Linfócito T , Biologia Computacional , Vacinas de Subunidades
3.
PLoS One ; 18(11): e0289773, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37992050

RESUMO

Shigella sonnei is a gram-negative bacterium and is the primary cause of shigellosis in advanced countries. An exceptional rise in the prevalence of the disease has been reported in Asia, the Middle East, and Latin America. To date, no preventive vaccine is available against S. sonnei infections. This pathogen has shown resistances towards both first- and second-line antibiotics. Therefore, an effective broad spectrum vaccine development against shigellosis is indispensable. In the present study, vaccinomics-aided immunoinformatics strategies were pursued to identify potential vaccine candidates from the S. sonnei whole proteome data. Pathogen essential proteins that are non-homologous to human and human gut microbiome proteome set, are feasible candidates for this purpose. Three antigenic outer membrane proteins were prioritized to predict lead epitopes based on reverse vaccinology approach. Multi-epitope-based chimeric vaccines was designed using lead B- and T-cell epitopes combined with suitable linker and adjuvant peptide sequences to enhance immune responses against the designed vaccine. The SS-MEVC construct was prioritized based on multiple physicochemical, immunological properties, and immune-receptors docking scores. Immune simulation analysis predicted strong immunogenic response capability of the designed vaccine construct. The Molecular dynamic simulations analysis ensured stable molecular interactions of lead vaccine construct with the host receptors. In silico restriction and cloning analysis predicted feasible cloning capability of the SS-MEVC construct within the E. coli expression system. The proposed vaccine construct is predicted to be more safe, effective and capable of inducing robust immune responses against S. sonnei infections and may be worthy of examination via in vitro/in vivo assays.


Assuntos
Disenteria Bacilar , Shigella sonnei , Humanos , Shigella sonnei/genética , Disenteria Bacilar/prevenção & controle , Disenteria Bacilar/microbiologia , Proteoma/metabolismo , Escherichia coli/metabolismo , Quimioinformática , Simulação de Acoplamento Molecular , Vacinas Bacterianas , Vacinas de Subunidades , Epitopos de Linfócito T , Simulação de Dinâmica Molecular , Biologia Computacional , Epitopos de Linfócito B
4.
Front Immunol ; 14: 1259612, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37781384

RESUMO

Leishmania tropica is a vector-borne parasitic protozoa that is the leading cause of leishmaniasis throughout the global tropics and subtropics. L. tropica is a multidrug-resistant parasite with a diverse set of serological, biochemical, and genomic features. There are currently no particular vaccines available to combat leishmaniasis. The present study prioritized potential vaccine candidate proteins of L. tropica using subtractive proteomics and vaccinomics approaches. These vaccine candidate proteins were downstream analyzed to predict B- and T-cell epitopes based on high antigenicity, non-allergenic, and non-toxic characteristics. The top-ranked overlapping MHC-I, MHC-II, and linear B-cell epitopes were prioritized for model vaccine designing. The lead epitopes were linked together by suitable linker sequences to design multi-epitope constructs. Immunogenic adjuvant sequences were incorporated at the N-terminus of the model vaccine constructs to enhance their immunological potential. Among different combinations of constructs, four vaccine designs were selected based on their physicochemical and immunological features. The tertiary structure models of the designed vaccine constructs were predicted and verified. The molecular docking and molecular dynamic (MD) simulation analyses indicated that the vaccine design V1 demonstrated robust and stable molecular interactions with toll-like receptor 4 (TLR4). The top-ranked vaccine construct model-IV demonstrated significant expressive capability in the E. coli expression system during in-silico restriction cloning analysis. The results of the present study are intriguing; nevertheless, experimental bioassays are required to validate the efficacy of the predicted model chimeric vaccine.


Assuntos
Leishmania tropica , Vacinas , Simulação de Acoplamento Molecular , Leishmania tropica/genética , Proteômica , Escherichia coli , Epitopos de Linfócito T
5.
J Biomol Struct Dyn ; : 1-15, 2023 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-37424185

RESUMO

Monkeypox virus (MPXV) is an orthopoxvirus, causing zoonotic infections in humans with smallpox-like symptoms. The WHO reported MPXV cases in May 2022 and the outbreak caused significant morbidity threats to immunocompromised individuals and children. Currently, no clinically validated therapies are available against MPXV infections. The present study is based on immunoinformatics approaches to design mRNA-based novel vaccine models against MPXV. Three proteins were prioritized based on high antigenicity, low allergenicity, and toxicity values to predict T- and B-cell epitopes. Lead T- and B-cell epitopes were used to design vaccine constructs, linked with epitope-specific linkers and adjuvant to enhance immune responses. Additional sequences, including Kozak sequence, MITD sequence, tPA sequence, Goblin 5', 3' UTRs, and a poly(A) tail were added to design stable and highly immunogenic mRNA vaccine construct. High-quality structures were predicted by molecular modeling and 3D-structural validation of the vaccine construct. Population coverage and epitope-conservancy speculated broader protection of designed vaccine model against multiple MPXV infectious strains. MPXV-V4 was eventually prioritized based on its physicochemical and immunological parameters and docking scores. Molecular dynamics and immune simulations analyses predicted significant structural stability and binding affinity of the top-ranked vaccine model with immune receptors to elicit cellular and humoral immunogenic responses against the MPXV. The pursuance of experimental and clinical follow-up of these prioritized constructs may lay the groundwork to develop safe and effective vaccine against MPXV.Communicated by Ramaswamy H. Sarma.

6.
Bioengineering (Basel) ; 10(4)2023 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-37106617

RESUMO

Lumpy skin disease is a fatal emerging disease of cattle, which has started to gain extensive attention due to its rapid incursions across the globe. The disease epidemic causes economic loss and cattle morbidity. Currently, there are no specific treatments and safe vaccines against the lumpy skin disease virus (LSDV) to halt the spread of the disease. The current study uses genome-scan vaccinomics analyses to prioritize promiscuous vaccine candidate proteins of the LSDV. These proteins were subjected to top-ranked B- and T-cell epitope prediction based on their antigenicity, allergenicity, and toxicity values. The shortlisted epitopes were connected using appropriate linkers and adjuvant sequences to design multi-epitope vaccine constructs. Three vaccine constructs were prioritized based on their immunological and physicochemical properties. The model constructs were back-translated to nucleotide sequences and codons were optimized. The Kozak sequence with a start codon along with MITD, tPA, Goblin 5', 3' UTRs, and a poly(A) tail sequences were added to design a stable and highly immunogenic mRNA vaccine. Molecular docking followed by MD simulation analysis predicted significant binding affinity and stability of LSDV-V2 construct within bovine immune receptors and predicted it to be the top-ranked candidate to stimulate the humeral and cellular immunogenic responses. Furthermore, in silico restriction cloning predicted feasible gene expression of the LSDV-V2 construct in a bacterial expression vector. It could prove worthwhile to validate the predicted vaccine models experimentally and clinically against LSDV.

7.
J Med Biochem ; 42(1): 35-46, 2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36819137

RESUMO

Background: COVID-19 is a new pandemic that has infected millions of people worldwide and caused a high morbidity and mortality rate. COVID-19 may have a harmful effect on organs, especially the kidneys. Aims: The main aim of our research is to study the association between the severity of COVID-19 disease and biochemical parameters related to kidney function and to investigate certain risk factors of COVID-19-associated kidney disease. Methods: A total of 174 individuals, 121 COVID-19 positive and 53 COVID-19 negative, were enrolled in this study. The relation between COVID-19 infection, severity, kidney function test, and hematological indicators were examined. Results: The most prominent symptoms among COVID-19 were fever (95% ) and fatigue (92%). Regarding biochemical parameters, median creatinine, MPV, and CRP were significantly higher in COVID-19 patients, whereas median eGFR, Na+, WBC, MCH, MCHC, and eosinophil percentages were significantly lower in this group. Severely infected patients were observed to have higher urea, creatinine, neutrophils, and NLR. However, median sodium, eGFR, hemoglobin, hematocrit, RBC, lymphocytes, and platelet count were significantly lower in the severe group. Urine examination of the severe group showed a significantly lower specific gravity, while urine pH, protein, and glucose were significantly higher. Conclusions: Our analysis indicates that COVID-19 infection affects kidney function, mainly creatinine level, urea, eGFR, Na+ and urine protein. Additionally, comorbidities such as older age (>65), hypertension, taking medications, and CRP (>33.55 mg/L) are considered risk factors that are more likely to contribute to kidney impairment in COVID-19 positive patients.

8.
J Tradit Chin Med ; 41(2): 270-275, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33825407

RESUMO

OBJECTIVE: To investigate the efficacy of the extract from Ononis spinosa L. (O. spinosa) on ethanol-induced gastric ulcer in rats. METHODS: Phytochemical constituents of the extract from O. spinosa were analyzed using liquid chromatography-mass spectrometry. Rats were classified into 4 equal groups; ulcer control received oral vehicle; positive control was administered with 40 mg/kg esomeprazole (standard drug) and 2 groups received 0.5 and 1 g/kg of O. spinosa extract, respectively. Gastric ulcer was induced by absolute ethanol (5 mL/kg) orally to all groups. Measurement of ulcer index, cyclooxygenase-2 (COX-2) expression and determination of total glutathione level in gastric mucosa were performed. RESULTS: Oral administration of the extract from O. spinosa at doses 0.5 and 1 g/kg lowered the ulcer indices by 80.39% and 98.71% , respectively, compared to 67.89% by esomeprazole (40 mg/kg). Histologically, treatment with the extract decreased necrosis and hemorrhage in mucosa and edema and infiltration by inflammatory cells in submucosa. Using immunohistochemical technique, it was demonstrated that COX-2 expression increased in mucosa of animals treated with the extract as well as by esomeprazole. O. spinosa and esomeprazole increased total glutathione level in the stomach compared to control. Ononin was the major compound of the extract followed by trifolirhizin, myricitrin, gentisic acid, cycloartenol and quercetin. CONCLUSION: The present study demonstrated that the extract from O. spinosa was able to protect gastric mucosa from ethanol injury by at least 2 mechanisms, namely the induction of COX-2 and decreasing oxidative stress in the stomach.


Assuntos
Ononis/química , Extratos Vegetais/administração & dosagem , Úlcera Gástrica/tratamento farmacológico , Animais , Ciclo-Oxigenase 2/genética , Ciclo-Oxigenase 2/imunologia , Etanol/efeitos adversos , Feminino , Mucosa Gástrica/efeitos dos fármacos , Mucosa Gástrica/imunologia , Humanos , Fitoterapia , Extratos Vegetais/isolamento & purificação , Ratos , Ratos Wistar , Úlcera Gástrica/induzido quimicamente , Úlcera Gástrica/genética , Úlcera Gástrica/imunologia
9.
The Korean Journal of Pain ; : 262-270, 2021.
Artigo em Inglês | WPRIM (Pacífico Ocidental) | ID: wpr-903820

RESUMO

Background@#Transient receptor potential vanilloid 1 (TRPV1) is a non-selective cation channel implicated in pain sensation in response to heat, protons, and capsaicin (CAPS). It is well established that TRPV1 is involved in mechanical allodynia. This study investigates the effect of Ononis spinosa (Fabaceae) in CAPS-induced mechanical allodynia and its mechanism of action. @*Methods@#Mechanical allodynia was induced by the intraplantar (ipl) injection of 40 µg CAPS into the left hind paw of male Wistar rats. Animals received an ipl injection of 100 µg O. spinosa methanolic leaf extract or 2.5% diclofenac sodium 20 minutes before CAPS injection. Paw withdrawal threshold (PWT) was measured using von Frey filament 30, 90, and 150 minutes after CAPS injection. A molecular docking tool, AutoDock 4.2, was used to study the binding energies and intermolecular interactions between O. spinosa constituents and TRPV1 receptor. @*Results@#The ipsilateral ipl injection of O. spinosa before CAPS injection increased PWT in rats at all time points. O. spinosa decreased mechanical allodynia by 5.35-fold compared to a 3.59-fold decrease produced by diclofenac sodium. The ipsilateral pretreatment with TRPV1 antagonist (300 µg 4-[3-Chloro-2-pyridinyl]-N-[4-[1,1-dimethylethyl] phenyl]-1-piperazinecarboxamide [BCTC]) as well as the β2-adrenoreceptor antagonist (150 µg butoxamine) attenuated the action of O. spinosa. Depending on molecular docking results, the activity of the extract could be attributed to the bindings of campesterol, stigmasterol, and ononin compounds to TRPV1. @*Conclusions@#O. spinosa alleviated CAPS-induced mechanical allodynia through 2 mechanisms: the direct modulation of TRPV1 and the involvement of β2 adrenoreceptor signaling.

10.
The Korean Journal of Pain ; : 262-270, 2021.
Artigo em Inglês | WPRIM (Pacífico Ocidental) | ID: wpr-896116

RESUMO

Background@#Transient receptor potential vanilloid 1 (TRPV1) is a non-selective cation channel implicated in pain sensation in response to heat, protons, and capsaicin (CAPS). It is well established that TRPV1 is involved in mechanical allodynia. This study investigates the effect of Ononis spinosa (Fabaceae) in CAPS-induced mechanical allodynia and its mechanism of action. @*Methods@#Mechanical allodynia was induced by the intraplantar (ipl) injection of 40 µg CAPS into the left hind paw of male Wistar rats. Animals received an ipl injection of 100 µg O. spinosa methanolic leaf extract or 2.5% diclofenac sodium 20 minutes before CAPS injection. Paw withdrawal threshold (PWT) was measured using von Frey filament 30, 90, and 150 minutes after CAPS injection. A molecular docking tool, AutoDock 4.2, was used to study the binding energies and intermolecular interactions between O. spinosa constituents and TRPV1 receptor. @*Results@#The ipsilateral ipl injection of O. spinosa before CAPS injection increased PWT in rats at all time points. O. spinosa decreased mechanical allodynia by 5.35-fold compared to a 3.59-fold decrease produced by diclofenac sodium. The ipsilateral pretreatment with TRPV1 antagonist (300 µg 4-[3-Chloro-2-pyridinyl]-N-[4-[1,1-dimethylethyl] phenyl]-1-piperazinecarboxamide [BCTC]) as well as the β2-adrenoreceptor antagonist (150 µg butoxamine) attenuated the action of O. spinosa. Depending on molecular docking results, the activity of the extract could be attributed to the bindings of campesterol, stigmasterol, and ononin compounds to TRPV1. @*Conclusions@#O. spinosa alleviated CAPS-induced mechanical allodynia through 2 mechanisms: the direct modulation of TRPV1 and the involvement of β2 adrenoreceptor signaling.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...